


clusterTest Takes in t-statistics for null hypothesis and for test
[cluster_loc, cluster_p, significant, cluster_t, tDist] = clusterTestMaris(nullMatrix,testMatrix,t_thr)
Inputs:
nullMatrix = a x b x iterations, where a and b are usually (frequency,
time), (time, electrode), (frequency, frequency), etc. Iterations is
the number of shuffled data analyzed. We expect nullMatrix to be
t-values from shuffled data.
testMatrix = a x b. The test matrix that will be tested against null
hypothesis
t_thr = threhold for t-value. If the t-value is above t_thr, then that
data point will be included in the cluster.
Outputs:
cluster_loc
cluster_p
cluster_t
tDist
Modification of Maris "Nonparametric statistical testing of EEG- and
MEG-data." J Neurosci Methods (2007)
The modification is that all null t-statistics are considered instead
of the highest value. An important point to make is that the p-values
are now subject to multiple-comparisons, so holm-bonferroni test should
be done on the p-value outputs.

0001 function [cluster_loc, cluster_p, cluster_t, tDist] = clusterTestKim(nullMatrix,testMatrix,tThrMatrix) 0002 %clusterTest Takes in t-statistics for null hypothesis and for test 0003 % [cluster_loc, cluster_p, significant, cluster_t, tDist] = clusterTestMaris(nullMatrix,testMatrix,t_thr) 0004 % Inputs: 0005 % nullMatrix = a x b x iterations, where a and b are usually (frequency, 0006 % time), (time, electrode), (frequency, frequency), etc. Iterations is 0007 % the number of shuffled data analyzed. We expect nullMatrix to be 0008 % t-values from shuffled data. 0009 % testMatrix = a x b. The test matrix that will be tested against null 0010 % hypothesis 0011 % t_thr = threhold for t-value. If the t-value is above t_thr, then that 0012 % data point will be included in the cluster. 0013 % Outputs: 0014 % cluster_loc 0015 % cluster_p 0016 % cluster_t 0017 % tDist 0018 % 0019 % Modification of Maris "Nonparametric statistical testing of EEG- and 0020 % MEG-data." J Neurosci Methods (2007) 0021 % The modification is that all null t-statistics are considered instead 0022 % of the highest value. An important point to make is that the p-values 0023 % are now subject to multiple-comparisons, so holm-bonferroni test should 0024 % be done on the p-value outputs. 0025 0026 % initialize 0027 iterations = size(nullMatrix,3); 0028 tDist = []; 0029 0030 % make null-hypothesis cluster statistic distribution 0031 for iter = 1:iterations 0032 % get the data 0033 null_t = squeeze(nullMatrix(:,:,iter)); 0034 0035 % make clusters 0036 [null_cluster_stat,~] = mouse.stat.clusterStatistic(null_t,tThrMatrix); 0037 tDist = [tDist null_cluster_stat]; 0038 end 0039 % find whether clusters of original data' p-value and t-value 0040 0041 0042 % time to test! 0043 % make clusters 0044 t = testMatrix; 0045 [cluster_t,cluster_loc] = mouse.stat.clusterStatistic(t,tThrMatrix); 0046 cluster_p = nan(1,numel(cluster_t)); 0047 for i=1:numel(cluster_t) 0048 cluster_p(i) = (sum(tDist>=abs(cluster_t(i)))+1)./(numel(tDist)+1); % where is the cluster statistic in the distribution 0049 end 0050 significant = holmBonf(cluster_p); 0051 end 0052